Improving Fraud and Abuse Detection in General Physician Claims: A Data Mining Study.
نویسندگان
چکیده
BACKGROUND We aimed to identify the indicators of healthcare fraud and abuse in general physicians' drug prescription claims, and to identify a subset of general physicians that were more likely to have committed fraud and abuse. METHODS We applied data mining approach to a major health insurance organization dataset of private sector general physicians' prescription claims. It involved 5 steps: clarifying the nature of the problem and objectives, data preparation, indicator identification and selection, cluster analysis to identify suspect physicians, and discriminant analysis to assess the validity of the clustering approach. RESULTS Thirteen indicators were developed in total. Over half of the general physicians (54%) were 'suspects' of conducting abusive behavior. The results also identified 2% of physicians as suspects of fraud. Discriminant analysis suggested that the indicators demonstrated adequate performance in the detection of physicians who were suspect of perpetrating fraud (98%) and abuse (85%) in a new sample of data. CONCLUSION Our data mining approach will help health insurance organizations in low-and middle-income countries (LMICs) in streamlining auditing approaches towards the suspect groups rather than routine auditing of all physicians.
منابع مشابه
Improving Fraud and Abuse Detection in General Physician Claims: A Data Mining Study
Background We aimed to identify the indicators of healthcare fraud and abuse in general physicians’ drug prescription claims, and to identify a subset of general physicians that were more likely to have committed fraud and abuse. Methods We applied data mining approach to a major health insurance organization dataset of private sector general physicians’ prescription claims. It involved 5 ste...
متن کاملA Medical Claim Fraud/Abuse Detection System based on Data Mining: A Case Study in Chile
This paper describes an effective medical claim fraud/abuse detection system based on data mining used by a Chilean private health insurance company. Fraud and abuse in medical claims have become a major concern within health insurance companies in Chile the last years due to the increasing losses in revenues. Processing medical claims is an exhausting manual task carried out by a few medical e...
متن کاملUsing Data Mining to Detect Health Care Fraud and Abuse: A Review of Literature
Inappropriate payments by insurance organizations or third party payers occur because of errors, abuse and fraud. The scale of this problem is large enough to make it a priority issue for health systems. Traditional methods of detecting health care fraud and abuse are time-consuming and inefficient. Combining automated methods and statistical knowledge lead to the emergence of a new interdiscip...
متن کاملIdentification of Fraud in Banking Data and Financial Institutions Using Classification Algorithms
In recent years, due to the expansion of financial institutions,as well as the popularity of the World Wide Weband e-commerce, a significant increase in the volume offinancial transactions observed. In addition to the increasein turnover, a huge increase in the number of fraud by user’sabnormality is resulting in billions of dollars in lossesover the world. T...
متن کاملIdentification of Fraud in Banking Data and Financial Institutions Using Classification Algorithms
In recent years, due to the expansion of financial institutions,as well as the popularity of the World Wide Weband e-commerce, a significant increase in the volume offinancial transactions observed. In addition to the increasein turnover, a huge increase in the number of fraud by user’sabnormality is resulting in billions of dollars in lossesover the world. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of health policy and management
دوره 5 3 شماره
صفحات -
تاریخ انتشار 2015